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In [BI01] we have proven that the generating function for self-avoiding
branched polymers in D+2 continuum dimensions is proportional to the pres-
sure of the hard-core continuum gas at negative activity in D dimensions. This
result explains why the critical behavior of branched polymers should be the
same as that of the ij3 (or Yang–Lee edge) field theory in two fewer dimensions
(as proposed by Parisi and Sourlas in 1981). In this article we review and
generalize the results of [BI01]. We show that the generating functions for
several branched polymers are proportional to correlation functions of the hard-
core gas. We derive Ward identities for certain branched polymer correlations.
We give reduction formulae for multi-species branched polymers and the corre-
sponding repulsive gases. Finally, we derive the massive scaling limit for the
2-point function of the one-dimensional hard-core gas, and thereby obtain the
scaling form of the 2-point function for branched polymers in three dimensions.

KEY WORDS: Branched polymers; Yang–Lee edge; repulsive-core singularity;
dimensional reduction; hard rods.

1. INTRODUCTION AND MAIN RESULTS

We define the generating function for branched polymers (mod transla-
tions) to be

ZBP(z)= C
.

N=1

zN

N!
C
T

F
R

(D+2)(N −1)
dy2 · · ·dyN D

ij ¥ T
[2UŒ(|yi −yj|2)] D

ij ¨ T
U(|yi −yj|2).

(1.1)



Here y1=0, y2,..., yN are the positions of the monomers, and we sum over
all tree graphs T on {1,..., N}. We assume that U(t) is a positive weight
function which tends to 1 as t Q ., and that UŒ(|y|2) is a positive, inte-
grable function of y ¥ RD+2. By taking limits, we may take U(t)=h(t − 1),
where h is the Heaviside step function. In this case, 2UŒ(|yi − yj |2)=
d(|yi − yj | − 1), and we obtain our standard model of hard spheres such that
spheres i and j are required to touch if ij ¥ T.

The above definition is a direct translation to the continuum of
the familiar model of lattice branched polymers. On the lattice ZD+2,
a branched polymer is a finite connected set of nearest-neighbor bonds with
no cycles [Sla99]. An N-vertex branched polymer is a subset {y1,..., yN}
of ZD+2, together with a tree graph on {y1,..., yN} such that for every
{yi, yj} ¥ T, |yi − yj |=1. One defines cN to be the number of N-vertex
branched polymers mod translations. Then, as in [Frö86], the generating
function ZBP(z)=;N zNcN can be written as

ZBP(z)= C
.

N=1

zN

N!
C
T

C
y2,..., yN

D
ij ¥ T

[2U −

ij] D
ij ¨ T

Uij, (1.2)

where 2U −

ij=d|yi − yj|, 1 and Uij=1 − dyi, yj
enforce the adjacency and loop-

free conditions, respectively. For example, c3=6 in Z2, which is correctly
accounted for in (1.2) as there are 3 trees, 4 possibilities for y2, and then 3
for y3. For more details, see [BI01].

Returning to the continuum, we define the partition function for the
repulsive gas in a box L … RD:

ZHC(z)= C
.

N=0

zN

N!
F

L
N

dx1 · · · dxN D
1 [ i < j [ N

U(|xi − xj |2). (1.3)

The main result of [BI01] is that the identity

lim
L q R

D

1
|L|

log ZHC(z)=−2pZBP
1 −

z
2p
2 (1.4)

holds for all z such that the right-hand side converges absolutely. The left-
hand side of (1.4) is 1/(kT) times the pressure of the repulsive gas.
Evidently, its leading singularity ’ (z − zc)2 − aHC is identical to the leading
singularity ’ (z − zc)2 − cBP of ZBP, where zc is the closest singularity to the
origin. Hence

aHC(D)=cBP(D+2). (1.5)

If one can define h from the asymptotic form cN ’ z−N
c N−h, then

h=3 − cHC by an Abelian theorem. Furthermore, one expects that s, the
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Yang–Lee edge exponent, is equal to 1 − aHC [PF99, Eq. (7)], which with
(1.5) leads to the Parisi–Sourlas relation [PS81]

h(D+2)=s(D)+2. (1.6)

One can also see that the exponents nBP, gBP are equal to their hard-core
counterparts in two fewer dimensions (see Section 3).

If one takes

U(|xi − xj |2)=e−w(xi − xj), (1.7)

with ŵ(k) > 0, then by the sine-Gordon transformation, (1.3) can be
written as

ZHC(z)=F exp 1F
L

dx ẑe ij(x)2 dmw(j), (1.8)

where dmw is the Gaussian measure with covariance w, and ẑ=zew(0)/2.
Thus certain branched polymer models can be written as − ẑe ij field
theories in two fewer dimensions. Taking into account an effective mass
term ’ j(x)2 from dmw, one finds a critical value for j on the imaginary
axis, and at the critical z the interaction is ij3+ higher order. Thus one
expects that these theories are in the same universality class as the
Yang–Lee edge (ij3) theory [Fis78] (see [LF95, PF99] for a more
complete investigation of the hypothesis that the repulsive-core singularity
is in the Yang–Lee class). We note that Shapir [Sha83, Sha85] has given a
field theory representation for lattice branched polymers which reduces to
the supersymmetric Yang–Lee model of [PS81] when presumably irrele-
vant terms are dropped.

Cardy has argued recently [Car01] (see also his contribution to this
issue) that the crossover from area-weighted self-avoiding loops to ordinary
self-avoiding loops in two dimensions is governed by a scaling function
related to the Airy function. Part of his argument is the reduction of two-
dimensional branched polymers to zero-dimensional ij3 theory. This is, in
essence, the content of Eqs. (1.4) and (1.8).

Correlation Functions

We define first the basic n-point density correlations for branched
polymers and for repulsive gases. Let

r(x̃)= C
N

i=1
d(x̃ − xi), r(ỹ)= C

N

i=1
d(ỹ − yi), (1.9)

Dimensional Reduction Formulas for Branched Polymer Correlation Functions 505



where x̃, xi ¥ RD and ỹ, yi ¥ RD+2. Then we put

G(n)
BP(ỹ1,..., ỹn; z)= C

.

N=1

zN

N!
C
T

F
R

(D+2) N
dy1 · · · dyN D

n

i=1
r(ỹi) D

ij ¥ T
[2U −

ij] D
ij ¨ T

Uij

G(n)
HC(x̃1,..., x̃n; z)= lim

L q R
D
7D

n

i=1
r(x̃i)8

HC, L

. (1.10)

Here U −

ij :=UŒ(|yi − yj |2), Uij :=U(|yi − yj |2), and O ·PHC, L is the expecta-
tion in the measure for which ZHC(z) is the normalizing constant. We also
write G (n), T

HC for the corresponding truncated expectation.
If y1,..., yn are distinct points, then we have

G (n)
BP(y1,..., yn; z)= C

.

M=0

zM

M!
C

T on {1,..., n+M}
F dyn+1 · · · dyn+M D

ij ¥ T
[2U −

ij] D
ij ¨ T

Uij.

(1.11)

Thus, for distinct points G (n)
BP is a sum/integral over branched polymers

whose vertices include y1,..., yn. When points are not distinct, G (n)
BP and G (n)

HC

are understood by smearing each r(ỹ) or r(x̃) by test functions. Thus in
general, G (n)

BP and G (n)
HC are distributions which contain d-function singulari-

ties at coinciding points. In addition, if U −

ij is not smooth (for example in
the hard sphere case U(t)=h(t − 1)), then G (n)

BP will inherit singularities
from U −

ij.
The density correlations G (n)

HC arise naturally when taking an order n
variational derivative of ZHC with respect to an external field. However, we
will need a different set of Green’s functions for the repulsive gas. Stripping
G (n)

HC of its singularities at coinciding points, we write

g (n)
HC(x1,..., xn; z)=ZHC(z)−1 C

.

m=0

zn+m

m!
F

L
m

dxn+1 · · · dxn+m D
1 [ i < j [ n+m

Uij.

(1.12)

Here n particles are forced to be at x1,..., xn, and if these are distinct points,
then g (n)

HC=G(n)
HC. In general, G (n)

HC is a sum of terms, each with some g (j)
HC,

j [ n multiplied by d-functions in some of the xi’s. For example,

G (2)
HC(x1, x2)=g(2)

HC(x1, x2)+g(1)
HC(x1) d(x1 − x2). (1.13)
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We shall see that g (n)
HC can be related to a certain n-tree branched polymer

correlation function:

g (n)
BP(y1,..., yn; z)= C

.

p=0

zp+n

p!
C
F(n)

F
R

(D+2) p
dyn+1 · · · dyn+p D

ij ¥ F(n)

[2U −

ij] D
ij ¨ F(n)

Uij.

(1.14)

Here F (n) is a loop-free graph or forest on {1,..., n+p} which consists of n
connected components or trees, each of which contains one of y1,..., yn.

Theorem 1.1. If z is in the interior of the domain of convergence
at ZBP, then in the limit L q RD,

g (n)
HC(x1,..., xn; z)=(−2p)n g (n)

BP
1x1,..., xn; −

z
2p
2 , (1.15)

and

G (n), T
HC (x1,..., xn; z)=(−2p) F

C
n − 1

dz2 · · · dzn G (n)
BP
1x1, y2,..., yn; −

z
2p
2 . (1.16)

Here xi ¥ RD and yi=(xi, zi) ¥ RD+2.

The relation (1.16) was proven in [BI01] by differentiating (1.4) with
respect to sources. We prove (1.15) in Section 2. As g (n)

HC and G (n)
HC agree at

non-coinciding points, (1.15) and (1.16) combine to give relations between
g (n)

BP and G (n)
BP . In particular, we show that the two-point functions obey a

Ward identity

d
d(r2)

g (2)
BP=

1
2

G (2)
BP , (1.17)

where by rotation and translation invariance g (2)
BP and G (2)

BP can be thought
of as functions of r2=|y1 − y2 |2 only.

In an appendix, we generalize the above results to repulsive gases and
branched polymers with more than one species of particle/monomer and
species-dependent interactions. Examples include the Widom–Rowlinson
model of penetrable hard spheres [WR70]. As with the models discussed
above, dimensional reduction is actually a consequence of an underlying
supersymmetry of the branched polymer model. This requires that the
attractive interaction between neighboring monomers be related to the
repulsive interaction.
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In Section 3 we focus on the case D=1 and derive a number of results
for the standard hard-core gas using the method of Laplace transforms.
We give fairly explicit formulas for G (2), T

HC and derive the values aHC=3
2 ,

nHC=1
2 , gHC=−1, thereby obtaining the same values for cBP, nBP, gBP in

three dimensions. (Note that for D=0, log ZHC=log(1+z), so that the
two-dimensional ZBP(z) has a logarithmic singularity at z=2p, which
implies that cBP=aHC=2. Unfortunately, dimensional reduction gives no
information on nBP, gBP in this case.) We derive the scaling form of the two-
point function near zc=−e−1:

G (2), T
HC (0, x; z) ’ |x|−(D − 2+gHC) KHC(x/t), (1.18)

with

KHC(x̂)=−
4
x̂2 e−x̂, (1.19)

which implies

G (2)
BP(0, y; z) ’ |x|−d − 2+gBP KBP(x/t), (1.20)

with

KBP(x̂)=
1

p2x̂
e−x̂. (1.21)

The form of KHC(x̂) is the same as that of the one-dimensional Ising model
near the Yang–Lee edge [Fis80]. The form of KBP(x̂) agrees with the pre-
diction of Miller [Mil91].

2. THE FOREST–ROOT FORMULA AND DIMENSIONAL REDUCTION

We wish to derive relationships between the hard-core Green’s func-
tions in D dimensions and the branched polymer Green’s functions in D+2
dimensions. The key is the Forest–Root formula, proven in [BI01]. Let
f(t) be any smooth function of variables

tij=|zi − zj |2, 1 [ i < j [ N and ti=|zi |2, 1 [ i [ N,

where each zi ¥ C. Assume that f, when regarded as a function of t1,..., tN,
has compact support. Any subset of the bonds {ij | 1 [ i < j [ N} forms a
graph on the vertices {1,..., N}. A subset R of vertices is called a set of
roots. A forest F is a graph that has no loops. The connected components
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Fig. 1. Example of a forest.

of a forest are trees. We are declaring that a graph with no bonds and just
one vertex is also a tree. See Fig. 1.

Theorem 2.1. (Forest–Root Formula)

f(0)= C
(F, R)

F
C

N
f (F, R)(t) 1 d2z

− p
2N

, (2.1)

where f (F, R)(t) denotes the derivative with respect to the variables tij with
ij ¥ F and ti with i ¥ R. The sum is over all forests F and all sets R of roots
with the property that each tree in F contains exactly one root from R, and
d2z=dudv, where z=u+iv.

Proof of Theorem 1.1 (1.15). In order to examine g (n)
HC, we set

N=n+m and put

f(t)= D
1 [ i < j [ N

U(|xij |2+tij) D
m

i=1
g(Eti) D

n

j=1
g(tj/E), (2.2)

where xij=xi − xj, E > 0, and where g is a smooth, decreasing function with
compact support such that g(0)=1. Working in a finite box L, we write

g (n)
HC(x1,..., xn) ZHC(z)= C

.

m=0

zm+n

m!
F

L
n

dxn+1 · · · dxn+m f(0), (2.3)

and insert (2.1). With yi=(xi, zi), this becomes

C
.

m=0

zm+n

m!
F

L
n

dxn+1 · · · dxn+m C
(F, R)

F
C

N
1 d2z

− p
2 D

ij ¥ F
U −

ij D
ij ¨ F

Uij D
i ¥ R

dg
dti

D
i ¨ R

g.

(2.4)

The forest F may be divided into F (n) (which consists of all the trees con-
taining any of the vertices 1,..., n), and the rest, F̃. If any of the vertices
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1,..., n are not roots, then the corresponding factor g(t/E) is not differen-
tiated, and so lacks a factor E−1 to compensate for the O(E) integration
volume. Therefore, neglecting O(E) terms, F (n)=T1 2 · · · 2 Tn with xi ¥ Ti

for i=1,..., n , and Ti disjoint. Let m=p+M, where M is the number of
vertices in F̃, and rewrite (2.4) as

C
.

p=0

zp+n

p!
F

L
p

dxn+1 · · · dxn+p C
F(n)

F
C

p

1 d2z
− p

2p

D
ij ¥ F(n)

U −

ij

· C
.

M=0

zM

M!
F

L
M

dxn+p+1 · · · dxn+p+M C
(F̃, R̃)

F
C

M
1 d2z

− p
2M

D
ij ¥ F̃

U −

ij

· D
i ¥ R̃

[EgŒ(Eti)] D
i ¨ R

g(Eti) D
ij ¨ F

Uij+o(1), (2.5)

where o(1) denotes a quantity which tends to zero with E. Here R̃ is a
subset of {n+p+1,..., n+p+M} and as before, each tree of F̃ has exactly
one root from R̃. We have eliminated the integrals over z1,..., zn because
(−pE)−1 gŒ(ti/E) tends to d(zi). The factors g(Eti) with n+1 [ i [ n+p can
be replaced with 1 because the decrease of UŒ in essence forces the corre-
sponding zi’s to remain bounded. Any errors from these approximations
are o(1).

The only barrier to writing (2.5) as a product is the presence of
interactions Uij linking F (n) and F̃. However, for small E the trees in F are
rarely close to each other or to the trees of F (n). Using again the decrease of
UŒ we see that all the vertices of a tree are in a bounded cluster and that
g(Eti) can be replaced with g(Etr), where r is the root of the tree. Then
the sum over roots leads to a factor N(T), the number of vertices in T.
Observe that (−E/p) N(T) g(Etr)N(T) − 1 gŒ(Etr) d2zr is a probability measure
which becomes very wide as E Q 0. Thus with high probability, the interac-
tions Uij between F (n) and F̃ can be replaced with 1, with an additional
contribution to the o(1) error. As a result, (2.5) can be rewritten as

5 C
.

p=0

zp+n

p!
F

(L × C)p
D
n+p

i=n+1

dD+2yi

− p
C
F(n)

D
ij ¥ F(n)

U −

ij D
ij ¨ F(n)

Uij
6 ZHC(z)+o(1). (2.6)

Taking the limit as E Q 0, we obtain a relation for finite D-dimensional
volume L:

g (n)
HC(x1,..., xn; z)=g(n)

BP
1x1,..., xn; −

z
2p
2 (−2p)n. (2.7)
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The limit L q RD exists for each term in the sum over p, by monotone con-
vergence. By dominated convergence, the sum on p may be interchanged
with the infinite volume limit, and we obtain the first part of Theorem 1.1.

Proof of (1.4). A similar factorization occurs in ZHC(z), so that all
the terms with k trees can be written as 1/k! times the kth power of

C
.

N=1

zN

N!
C
T

F
L

dx1 F
(L × C)N − 1

D
N

i=2

dyi

− p
D

ij ¥ T
U −

ij D
ij ¨ T

Uij, (2.8)

so that, as argued in [BI01],

lim
L q R

D

1
|L|

log ZHC(z)=−2pZBP
1 −

z
2p
2 . (2.9)

Proof of Theorem 1.1 (1.16). The relation between G (n)
HC and G (n)

BP

may be derived by differentiating (2.9) with respect to sources. Then, as
explained in [BI01],

G (n)
HC(x1 · · · xn; z)=(−2p) F

C
n − 1

D
n

i=2
d2zi G (n)

BP
1x1, y2,..., yn; −

z
2p
2 , (2.10)

which is (1.16). In momentum space, then, G (n), T
HC may be obtained from

G (n)
BP by setting the components of momenta in the two extra dimensions to

zero. This contrasts with the relation (2.7) between g (n)
HC and g (n)

BP , in which
the spatial components in the two extra dimensions are set to 0.

Proof of (1.17). Relations between GBP and gBP may be derived by
combining (2.7) and (2.10). For example, consider the 2-point functions,
which by rotation invariance can be expressed as functions of the squared-
distance t:

G (2)
HC(t; z) :=G (2)

HC(x1, x2; z), where |x1 − x2 |2=t,

G (2)
BP(t; z) :=G (2)

BP(y1, y2; z), where |y1 − y2 |2=t,
(2.11)

and similarly for g (2)
HC and g (2)

BP . Since g (2)
HC agrees with G (2)

HC at non-coinciding
points, (2.7) and (2.10) imply that

g (2), T
BP (t; z)=(−2p)−1 F

.

t
p dtŒ G (2)

BP(tŒ, z), t ] 0. (2.12)
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Differentiation yields

d
dt

g (2)
BP(t; z)=

1
2

G (2)
BP(t; z). (2.13)

This may be thought of as a Ward identity for the supersymmetry of our
model of branched polymers.

3. GREEN’S FUNCTION FOR THE HARD-CORE GAS IN ONE

DIMENSION

Laplace transforms can be used to give fairly explicit formulas for the
Green’s function for one-dimensional gases with only nearest neighbor
interactions. We follow [FW69] in deriving the relevant expressions for the
basic hard-core gas with no interactions other than a minimum separation
of 1 between particles.

Let us write the grand canonical partition function in the following
way (we omit the subscript HC in most of this section):

Z(L)= C
.

N=0
zN F

x1 \ 1
dx1 F

x2 \ x1+1
dx2 · · · F

L − 1 \ xN \ xN − 1+1
dxN. (3.1)

The particles are restricted to the interval L=[1, L − 1], as if external par-
ticles had been placed at 0 and L. We assume L > 1 and put Z(L)=1 for
1 < L [ 2. The Laplace transform can be evaluated explicitly:

Ẑ(s) :=F
.

1
dL e−sLZ(L)

= C
.

N=0
zNJ(s)N+1, (3.2)

where

J(s)=F
.

1
dx e−sx=

1
s

e−s. (3.3)

Using analytic continuation as necessary to define Ẑ(s), we have

Ẑ(s)=
J(s)

1 − zJ(s)
=

1
se s − z

. (3.4)
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We obtain Z(L) by inverse transform:

Z(L)=
1

2pi
F

1
se s − z

e sL ds. (3.5)

This leads to a residue formula

Z(L)= C
.

n=0

e sn(L − 1)

sn+1
, (3.6)

where {sn} are the solutions to se s=z, arranged in order of decreasing real
part. These solutions are the branches of the Lambert W-function
[CGHJK].

We will make use of some properties of the sn. For z > 0, there is one
real solution, and for − e−1 < z < 0, there are two real solutions (see Fig. 2).
The complex solutions come in conjugate pairs, and all have real parts
which are less than the real solutions. (This can be seen by writing
s=x+iy and letting x(y) solve the modulus equation (x2+y2) e2x=|z|2.
Then dx

dy2=−1/[2(x+x2+y2)] < − c < 0 with c independent of x, y in any
bounded region not intersecting {(x, y) | x ¥ (−1, 0)}. This shows, in fact,
that the upper gap Re(s1 − s2) > B > 0 with B independent of z in any
interval [ − 1, z0] with z0 < 0.) If we put sn=xn+iyn, then |yn − np| [

const [CGHJK, Fig. 4]. In addition, xn ’ − log |yn/z| ’ − log |n/z| for
large n, from the modulus equation. Hence the sum in (3.6) converges for
all L > 1.

The density, or one-point function, G (1)(x)=G(1), is the expectation of
r(x)=;N

j=1 d(x − xj) in the limit as L q .. If we take L=[ − L
2+1, L

2 − 1],
then

G (1)= lim
L Q .

Z 1L
2

+x2 zZ 1L
2

− x2

Z(L)
. (3.7)

Fig. 2. Graph of the function z=se s.
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Only the n=0 term of (3.6) survives the L Q . limit. Thus we have

G (1)=
ze−s0

s0+1
=

s0

s0+1
, (3.8)

where we have used the relation z=s0e s0. If we identify G (1) with the
density r̄ and solve for the pressure p=s0kT, we obtain the equation of
state for hard rods of unit length [Ton36]:

p=
r̄kT
1 − r̄

. (3.9)

The density-density correlation, or two-point function G (2)(0, x)=
G (2)(x), is the expectation of r(0) r(x). For x > 1, this can be written as

G (2)(x)= lim
L Q .

Z 1L
2
2 zZ(x) zZ 1L

2
− x2

Z(L)

=
s0

s0+1
e−s0xzZ(x). (3.10)

One can insert the formula

Z(x)= C
.

N=0

zN

N!
(x − N − 1)N h(x − N − 1) (3.11)

to obtain the long-known expression for G (2) (see, for example, [SZK53,
Eq. (32)]) which is useful if x is not too large. Alternatively, one can insert
(3.6) to obtain

G (2)(x)= C
.

n=0

s0

s0+1
sn

sn+1
e (sn − s0) x, (3.12)

and after subtracting G (1) 2, we obtain an expression for the truncated
Green’s function

G (2), T(x)= C
.

n=1

s0

s0+1
sn

sn+1
e (sn − s0) x, (3.13)

which is convergent for x > 1. It is apparent from (3.11) that ( d
dx)

N G (2), T(x)
is continuous, except for a jump at x=N+1. This is reflected in the
divergence of the series (3.13) at x=N+1, when differentiated N times.
For |x| < 1, G (2), T(x)=0 except for a d-function at 0 with coefficient G (1).
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Scaling Form of the Green’s Function

As z s zc=−e−1, the two real solutions to se s=z approach the value
− 1. The correlation length is given by

t :=5 lim
|x| Q .

−
1

|x|
log G (2), T(x)6

−1

=(s0 − s1)−1. (3.14)

It is clear from Fig. 2 that s0 − s1 ’ (z − zc)
1
2. Hence, as z s zc, t diverges as

(z − zc)−n with a correlation exponent n=1
2 .

If we let z s zc and x Q . while keeping x̂=x/t fixed, then the
asymptotic form of G (2), T is described by a scaling function

K(x̂)= lim
x Q ., z s zc

xD − 2+gG (2), T(x). (3.15)

Here D=1, and we take the anomalous dimension g=−1 in order to get a
nontrivial limit. From (3.13), and the uniform gap between s1 and the other
solutions, we have

K(x̂)= lim
x Q ., z s zc

s0

s0+1
s1

s1+1
1
x2 e−x/t. (3.16)

A short calculation shows that s0
s0+1

s1
s1+1=− 4

(s0 − s1)2 (1+O(z − zc)), and hence

K(x̂)=−
4
x̂2 e−x̂. (3.17)

We may also define a scaling function for branched polymers:

KBP(x̂)= lim
x Q ., z q z̃c

xd − 2+gBPG (2)
BP(0, x). (3.18)

Here x̂=x/tBP with

tBP :=5 lim
|x| Q .

−
1

|x|
log G (2)

BP(0, x)6
−1

, (3.19)

and gBP is chosen so as to obtain a nontrivial limit for KBP. As explained
in [BI01], we have the relation (2.10) between G (2)

BP and G (2), T
HC , which when

differentiated yields

G (2)
BP
1 t; −

z
2p
2=

1
2p2

d
dt

G (2), T
HC (t, z). (3.20)
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Hence, the critical activity z̃c for branched polymers is equal to
− 2pzc=2pe, tBP( − z

2p)=tHC(z), gBP=gHC, and

KBP(x̂)=
1

4p2 [x̂K −

HC(x̂) − (D − 2+gHC) KHC(x̂)]

=
1

p2x̂
e−x̂. (3.21)

Of course, the exponent nBP governing the divergence of tBP as z q z̃c must
equal nHC (=1

2 if d=D+2=3).

APPENDIX A: MULTISPECIES EXAMPLES

We can generate the arguments of Section 2 to multispecies examples.
Define a repulsive gas partition function in D dimensions:

ZHC(z)= C
.

N=0

1
N!

C
a1,..., aN

D
N

i=1
za F

L
N

dx1 · · · dxN D
ij

Uaiaj(|xi − xj |2), (A.1)

where each ai is summed over the set of species of the problem, za is the
activity of species a, and Uab is a repulsive interaction between species a

and species b. The corresponding multispecies branched polymer generat-
ing function is

ZBP(z)= C
.

N=1

1
N!

C
T

C
a1,..., aN

D
N

i=1
za F

(R
D+2)N − 1

dy2 · · · dyN D
ij ¥ T

[2U −

ij] D
ij ¨ T

Uij,

(A.2)

where

Uij=Uaiaj(|xi − xj |2), (A.3)

and U −

ij is its derivative. In particular, for the hard-core model with
minimum separation Rab between species a and species b, we would have
Uab(t)=h(t − R2

ab) and

2Uab
Œ(|xi − xj |2)=

1
Rab

d(|xi − xj | − Rab). (A.4)
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Assume that Uab satisfies the usual conditions (Uab, Uab− positive,
Uab

Q 1 at ., Uab
Œ integrable in RD+2). Then, provided ZBP(z) is absolutely

convergent, we obtain a reduction formula

lim
L q R

D

1
|L|

log ZHC(z)=−2pZBP
1 −

z
2p
2 . (A.5)

We also obtain results as in Theorem 1.1 for correlation functions.
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